top of page

Date Shape Group

Public·135 members
Aladin Sharapov
Aladin Sharapov

Electrical Installation Work


This highly successful book is now updated in line with the Amendment 2-2022 of 18th Edition of the Wiring Regulations. It provides a topic-by-topic progression through the areas of electrical installations, including how and why electrical installations are designed, installed and tested. This tenth edition contains new material on batteries, LED and ELV lighting, data cabling and renewable electricity generation and distribution, with some focus on medical locations, and a glossary of terms. The guidance on tools used and safety legislation has also been brought up to date.




Electrical Installation Work



Wiring is subject to safety standards for design and installation. Allowable wire and cable types and sizes are specified according to the circuit operating voltage and electric current capability, with further restrictions on the environmental conditions, such as ambient temperature range, moisture levels, and exposure to sunlight and chemicals.


Associated circuit protection, control, and distribution devices within a building's wiring system are subject to voltage, current, and functional specifications. Wiring safety codes vary by locality, country, or region. The International Electrotechnical Commission (IEC) is attempting to harmonise wiring standards among member countries, but significant variations in design and installation requirements still exist.


Wiring installation codes and regulations are intended to protect people and property from electrical shock and fire hazards. They are usually based on a model code (with or without local amendments) produced by a national or international standards organisation, such as the IEC.


In Australia and New Zealand, the AS/NZS 3000 standard, commonly known as the "wiring rules", specifies requirements for the selection and installation of electrical equipment, and the design and testing of such installations. The standard is mandatory in both New Zealand and Australia; therefore, all electrical work covered by the standard must comply.


In European countries, an attempt has been made to harmonise national wiring standards in an IEC standard, IEC 60364 Electrical Installations for Buildings. Hence national standards follow an identical system of sections and chapters. However, this standard is not written in such language that it can readily be adopted as a national wiring code. Neither is it designed for field use by electrical tradesmen and inspectors for testing compliance with national wiring standards. By contrast, national codes, such as the NEC or CSA C22.1, generally exemplify the common objectives of IEC 60364, but provide specific rules in a form that allows for guidance of those installing and inspecting electrical systems.


The German Commission for Electrotechnical, Electronic, and Information Technologies of DIN and VDE (DKE) (Deutsche Kommission Elektrotechnik Elektronik Informationstechnik in DIN und VDE) is the organisation responsible for the promulgation of electrical standards and safety specifications. DIN VDE 0100 is the German wiring regulations document harmonised with IEC 60364.


In the United Kingdom, wiring installations are regulated by the Institution of Engineering and Technology Requirements for Electrical Installations: IEE Wiring Regulations, BS 7671: 2008, which are harmonised with IEC 60364. The 17th edition (issued in January 2008) included new sections for microgeneration and solar photovoltaic systems. The first edition was published in 1882. In 2018, the 18th edition of the wiring regulations BS7671:2018 was released and came into force in January 2019 and BS7671:2018 Amendment 2 was issued March 2022. BS 7671 is the standard to which the UK electrical industry adheres, and compliance with BS 7671 is now required by law through the Electricity, Safety, Quality and Continuity Regulations 2002.


The first electrical codes in the United States originated in New York in 1881 to regulate installations of electric lighting. Since 1897 the US National Fire Protection Association, a private non-profit association formed by insurance companies, has published the National Electrical Code (NEC). States, counties or cities often include the NEC in their local building codes by reference along with local differences. The NEC is modified every three years. It is a consensus code considering suggestions from interested parties. The proposals are studied by committees of engineers, tradesmen, manufacturer representatives, fire fighters, and other invitees.


Since 1927, the Canadian Standards Association (CSA) has produced the Canadian Safety Standard for Electrical Installations, which is the basis for provincial electrical codes. The CSA also produces the Canadian Electrical Code, the 2006 edition of which references IEC 60364 (Electrical Installations for Buildings) and states that the code addresses the fundamental principles of electrical protection in Section 131. The Canadian code reprints Chapter 13 of IEC 60364, but there are no numerical criteria listed in that chapter to assess the adequacy of any electrical installation.


In a typical electrical code, some colour-coding of wires is mandatory. Many local rules and exceptions exist per country, state, or region.[1] Older installations vary in colour codes, and colours may fade with insulation exposure to heat, light, and aging.


The United Kingdom requires the use of wire covered with green/yellow striped insulation, for safety earthing (grounding) connections.[5] This growing international standard was adopted for its distinctive appearance, to reduce the likelihood of dangerous confusion of safety earthing (grounding) wires with other electrical functions, especially by persons affected by red-green colour blindness.


In 2004, the UK adopted the European Union standard for phase colours of brown, black, and grey, and for neutral, blue. However, the old phase colours of red, yellow, and blue with black for neutral are still found in old installations. Single-phase wiring should strictly be in brown (red in old system), regardless of which phase it originated from, but it is common practice to use three-core cable in the three-phase colours for two-way lighting switches. The accepted practice is to sleeve the ends of the cores in brown or blue sleeves as appropriate.[6]


Wiring systems in a single family home or duplex, for example, are simple, with relatively low power requirements, infrequent changes to the building structure and layout, usually with dry, moderate temperature and non-corrosive environmental conditions. In a light commercial environment, more frequent wiring changes can be expected, large apparatus may be installed and special conditions of heat or moisture may apply. Heavy industries have more demanding wiring requirements, such as very large currents and higher voltages, frequent changes of equipment layout, corrosive, or wet or explosive atmospheres. In facilities that handle flammable gases or liquids, special rules may govern the installation and wiring of electrical equipment in hazardous areas.


Wires and cables are rated by the circuit voltage, temperature rating and environmental conditions (moisture, sunlight, oil, chemicals) in which they can be used. A wire or cable has a voltage (to neutral) rating and a maximum conductor surface temperature rating. The amount of current a cable or wire can safely carry depends on the installation conditions.


Insulated cables are rated by their allowable operating voltage and their maximum operating temperature at the conductor surface. A cable may carry multiple usage ratings for applications, for example, one rating for dry installations and another when exposed to moisture or oil.


Generally, single conductor building wire in small sizes is solid wire, since the wiring is not required to be very flexible. Building wire conductors larger than 10 AWG (or about 5 mm2) are stranded for flexibility during installation, but are not sufficiently pliable to use as appliance cord.


Cables for industrial, commercial and apartment buildings may contain many insulated conductors in an overall jacket, with helical tape steel or aluminium armour, or steel wire armour, and perhaps as well an overall PVC or lead jacket for protection from moisture and physical damage. Cables intended for very flexible service or in marine applications may be protected by woven bronze wires. Power or communications cables (e.g., computer networking) that are routed in or through air-handling spaces (plenums) of office buildings are required under the model building code to be either encased in metal conduit, or rated for low flame and smoke production.


The environment of the installed wires determine how much current a cable is permitted to carry. Because multiple conductors bundled in a cable cannot dissipate heat as easily as single insulated conductors, those circuits are always rated at a lower ampacity. Tables in electrical safety codes give the maximum allowable current based on size of conductor, voltage potential, insulation type and thickness, and the temperature rating of the cable itself. The allowable current will also be different for wet or dry locations, for hot (attic) or cool (underground) locations. In a run of cable through several areas, the part with the lowest rating becomes the rating of the overall run.


Cables usually are secured with special fittings where they enter electrical apparatus; this may be a simple screw clamp for jacketed cables in a dry location, or a polymer-gasketed cable connector that mechanically engages the armour of an armoured cable and provides a water-resistant connection. Special cable fittings may be applied to prevent explosive gases from flowing in the interior of jacketed cables, where the cable passes through areas where flammable gases are present. To prevent loosening of the connections of individual conductors of a cable, cables must be supported near their entrance to devices and at regular intervals along their runs. In tall buildings, special designs are required to support the conductors of vertical runs of cable. Generally, only one cable per fitting is permitted, unless the fitting is rated or listed for multiple cables. 041b061a72


About

Welcome to the group! You can connect with other members, ge...

Members

  • Richard Hire
  • Augustus Cuthbert
    Augustus Cuthbert
  • Shivani Patil
    Shivani Patil
  • Teju Sharma
    Teju Sharma
  • PhuongLien NhaSuong
    PhuongLien NhaSuong
bottom of page